“Good to Great” a great writing by “Jim Collins”

Good to Great”- this book was written by Jim Collins. This is one of the best business books so far I am still reading. When I am going through pages by page I wonder if I could remember those all! But it’s just not simple. So I have made a decision I will write some quotes and special words from this book on words and keep it for me in future.  And obviously, his great outcome should not be forgotten and I must share it with each of them; whom I really love to see to be successful in their life.

In chapter # 3 he explained those;

How to be Rigorous?

Practical Discipline # 1: When in doubt, don’t hire-keep looking.

Quote: “Those who build great companies understand that the ultimate throttle on growth for any great company is not markets, or technology, or competition, or products. It is one thing above all others; the ability to get and keep enough the right people.”

Practical Discipline # 2: When you know you need to make a people change, act.

The Answer he concluded; “First, if it were a hiring decision (rather than a “should this person get off the bus?” decision), would you hire the person again? Second, if the person came to tell you that he or she is leaving to pursue an exciting new opportunity, would you feel terribly disappointed or secretly relieved?

Practical Discipline # 3: Put your best people on your biggest opportunity not your biggest problems. 

James C. Collins (Jim Collins)

There is an important corollary to this discipline. When you decide to sell off your problems, don’t sell off your best people. This is one of those little secrets of change. If you create a place where the best people always have a seat on the bus, they’re more likely to support changes in direction.

The key point of this chapter is not just the idea of getting the right people on the team on the team. The key point is that the “who” question comes before “what” decisions- before vision, before strategy, before organization structure, before tactics. First who, then what – as a rigorous discipline, consistently applied.

[I will back again to this topic and this will continue to beyond and infinity] 

বিশ্বের অর্থনীতিক দিক থেকে সফল মানুষরা যে সব কাজ কখনই করে না…

পড়তে যেমন ভাল লাগে তার চাইতেও বেশি ভাল লাগে লিখতে। ভাবতেই ভাল লাগে কেউ আমার লিখা পড়ছে। সে যেভাবেই হোক। আজ লিখব একটা অনুবাদ। রচনার নাম দেখে অনেকেই হয়ত বুঝতে পারছেন যে কি ধরনের লিখা এখানে থাকবে। তবুও বলছি এসেই যখন পরেছেন তাহলে পড়েই যান। আর হ্যাঁ- যে জন্য পড়তে বলছি; আমাকে জানাবেন আমার অনুবাদ কেমন হল। আরও কিছু অনুবাদ করার চিন্তা মাথায় ঘুরছে। কিন্তু সাহস আর সময় দুটাই নাই। তবুও লিখছি…
০০একদম আক্ষরিক অনুবাদ করছি না অনেকটা গল্পের আকারে বলার চেষ্টা করব।০০

তো আমারা বাসে বা ট্রেনে এখনো কিছু কথামালা দেখতে পাই তার মধ্যে যেমন; “ব্যবহার বংশের পরিচয়”। এই কথা যে কি শক্তিশালী তা আমি এখনও বুঝে উঠতে পারি নাই। তার পরেও এটা সত্যি যে আমাদের আমার পরিচয় কিন্তু আমার আচার ব্যবহার এই প্রকাশ পায়। যেমন ধরুন আমি অনেক তাড়াহুড়ো করে চলি, আর এখানে ওখানে ঘুতো খাই। এটাই তো হওয়া সাভাবিক তাই না? অর্থনৈতিক বিষয় গুলোও তাই। আবার সেই কথামালায় ফিরে যাই। আমাকে বাবা মা অনেক বলত “বাবা আয় বুঝে ব্যয় কর”। কে শুনে কার কথা… 🙂
তবে একটা সত্যি কথা, আমি বলতে পারি আয় বুঝে ব্যয় করার জন্য একাধিক বার সমস্যায় পড়েছি।

নিচের ৭ টি কাজ বিশ্বের অর্থনৈতিক দিক থেকে  সফল মানুষেরা করে না বা করতে দেখান যায় না ;

১। তারা কখনই লাটারি খেলে নাঃ কথায় আছে “যে ধন খুব সহজে পাওয়া যায় তা বেশি দিন থাকে না। তাবে কি দাদুদের কথাই ঠিক? না আসলে এর কিছু ব্যাখা আছে; যারা খুব সহজেই টাকা পায় তাদের প্রধান সমস্যা হল তারা তাদের টাকা ভাল মত ব্যবস্থাপনা করতে পারেন না। এ জন্য খুব সহজেই তারা তাদের টাকা শেষ করে ফেলেন এবং ক্ষেত্র বিশেষ এ লোন এ পড়ে যান। তাহলে একটি কথায় আসে খুব সহজে টাকা পাওয়ার থেকে নিজে উপার্জন করা অনেক ভাল।

২।  ভাল কিছুর জন্য অপেক্ষা না করাঃ আশা করা কখনই ভুল কাজ নয়। এই কথা শুনে থাকবেন হয়ত ” আশা সেই একমাত্র মৌমাছি যে ফুল ছাড়া মধু তৈরি করতে পারে”  তার মানে হল যতই খারাপ সময় যাক না কেন ভাল কিছু করতে হলে ভাল কিছুর জন্য আশা না করে কাজ করে যাওয়া। এটাই কতে সফল মানুষরা।

৩। লক্ষে স্থির না থাকাঃ

৪। প্রতিনিয়ত নতুন কে না জানা এবং নিজের কর্মদক্ষতা না বাড়ানোঃ

৫। যা খরচ করা প্রয়োজন ঠিক তাই খরচ করাঃ

৬। কখনই কম নিয়ে থেমে থাকে নাঃ

৭। টাকা কখনই বসিয়ে না রাখাঃ

(অসম্পাপ্ত; আরও লেখা হবে)

শেরেক ও তার প্রাসাদ

আমার যে একখান ব্যক্তিগত ব্লগ আছে তা প্রায় ভুলেই গিয়েছিলাম। আজ কি কারনে পুরাতন ছবি দেখতে দেখতে শেরেক ও তার কেল্লা দেখে মনে  হল । না আজ কিছু লিখতেই হবে শেরেখ রে নিয়ে না হলে তার প্রতি অবিচার করা হবে 🙁  ।

সেই ২০০১ সালে প্রথম রিলিজ হয় শেরেক মুভি। মুভির প্লট আসে ১৯৯০ সালের আমেরিকান কাটুনিস্ট উইলিয়াম স্টেইগ এর ছবি বই থেকে। অনেকটা আমাদের “চাচা চৌধুরী” এর মত। আমি প্রথম দেখি ২০০৮ সালে সেই ২০০১ সালের ছবি। তখন আমাদের কাছে খুব একটা ইন্টারনেট ছিল না বা আমারা নতুন নতুন মুভি খুব তারাতারি দেখতে পারতাম না।

শেরেক দেখেই খুব ভাল লেগেছিল সেই সময়। তখন থেকেই ভাবতাম ইস যদি ওর প্রাসাদে বাস্তবে দেখতে পারতাম। যা হোক সেই দেখা হল এবার ২০১৭ সালে মে মাসে সিঙ্গাপুর এর ইউনিভার্সাল স্টুডিও তে ।

শেরেক এর যে এত ভক্ত থাকবে তা জানাই ছিল কিন্তু তাই বলে আমার মত বা আমার থেকে বুড়ো রা?  এই ছবি দেখলে একটু বুজতে পারবেন। বাচ্চারা যত সংখ্যায় আছে তার থেকে বেশি বুড়োরা।

আরও অনেক ছবি তুলেছিলাম কিন্তু খুজে পাচ্ছি না এখন। যাই হোক এই ৪৬ টাওয়ারের প্রাসাদের মধ্যে অনেক কিছুই আছে কিন্তু আমারা কিছুই দেখার সময় পাই নাই। তাবে দেখলাম এখানে শেরেকের একটা মুভি দেখায় যা কিনা ৫ ডি। মানে চেয়ার নড়বে, বৃষ্টি আসলে ভিজে যাবেন আর ৩ ডি গ্লাস দিয়ে ত সব যেন হাতের কাছে বাস্তব হয়ে যায়।

কিছু ছবি ধার করে এই পোস্টে দিলাম যাতে আপনাদেরও যাওয়ার ইচ্ছা করে।  এক কথায় বলতে পাই সিঙ্গাপুরের সেন্টতোসা আইল্যান্ড এর ৭ দিন ঘুরলেও মজা শেষ করতে পারবেন না। আর ইউনিভার্সাল স্টুডিও – আমার মনে হয় ৫ দিন এখানে লাগবে আমার নিজেরই। আর পুরা আইল্যান্ড এর মজা ভাল মত নিতে হলে ১৫ দিন থাকতে চাই 🙂 🙂

কিন্তু কি করার আমাদের সে সময় কি আছে? না নাই। ১ দিনেই অনেক অনেক কিছু আপনি ঘুরতে পারবেন। আমার ২০১৭ সাল পর্যন্ত এই কৃত্রিম আইল্যান্ডে ৪ বার যাওয়া হইছে । কিন্তু এখনও যে বাকি আছে অনেক অনেক কিছু।

Glimpse of Probability

Probability or Chance:

Probability of chance is a common term used in day-to-day life. For example, we generally say, ‘it may rain today. This statement has a certain uncertainty.

Probability is quantitative measure of the chance of occurrence of a particular event.

Experiment

An experiment is an operation which can produce well-defined outcomes.

Random Experiment

If all the possible outcomes of an experiment are known but the exact output cannot be predicted in advance, that experiment is called a random experiment.

Examples;

Tossing of a fair coin

When we toss a coin, the outcome will be either Head (H) or Tail (T)

Throwing an unbiased die

Die is a small cube used in games. It has six faces and each of the six faces shows a different number of dots from 1 to 6. Plural of die is dice.

When a die is thrown or rolled, the outcome is the number that appears on its upper face and it is a random integer from one to six, each value being equally likely.

Taking a ball randomly from a bag containing balls of different colors.

Sample Space

Sample Space is the set of all possible outcomes of an experiment. It is denoted by S.

Examples

When a coin is tossed, S = {H, T} where H = Head and T = Tail

When a dice is thrown, S = {1, 2 , 3, 4, 5, 6}

When two coins are tossed, S = {HH, HT, TH, TT} where H = Head and T = Tail

Event

Any subset of a Sample Space is an event. Events are generally denoted by capital letters A, B, C, D etc.

Examples

When a coin is tossed, outcome of getting head or tail is an event

When a die is rolled, outcome of getting 1 or 2 or 3 or 4 or 5 or 6 is an event

Equally Likely Events

Events are said to be equally likely if there is no preference for a particular event over the other.

Examples

When a coin is tossed, Head (H) or Tail is equally likely to occur.

When a dice is thrown, all the six faces (1, 2, 3, 4, 5, 6) are equally likely to occur.

Mutually Exclusive Events

Two or more than two events are said to be mutually exclusive if the occurrence of one of the events excludes the occurrence of the other

This can be better illustrated with the following examples

When a coin is tossed, we get either Head or Tail. Head and Tail cannot come simultaneously. Hence occurrence of Head and Tail are mutually exclusive events.

When a die is rolled, we get 1 or 2 or 3 or 4 or 5 or 6. All these faces cannot come simultaneously. Hence occurrences of particular faces when rolling a die are mutually exclusive events.

Note : If A and B are mutually exclusive events, A ∩ B = ϕ where ϕ represents empty set.

Consider a die is thrown and A be the event of getting 2 or 4 or 6 and B be the event of getting 4 or 5 or 6. Then

A = {2, 4, 6} and B = {4, 5, 6}

Here A ∩ B ≠ϕ. Hence A and B are not mutually exclusive events.

 Independent Events

Events can be said to be independent if the occurrence or non-occurrence of one event does not influence the occurrence or non-occurrence of the other.

Example : When a coin is tossed twice, the event of getting Tail(T) in the first toss and the event of getting Tail(T) in the second toss are independent events. This is because the occurrence of getting Tail(T) in any toss does not influence the occurrence of getting Tail(T) in the other toss.

Simple Events

In the case of simple events, we take the probability of occurrence of single events.

Examples

Probability of getting a Head (H) when a coin is tossed

Probability of getting 1 when a die is thrown

Compound Events

In the case of compound events, we take the probability of joint occurrence of two or more events.

Examples

When two coins are tossed, probability of getting a Head (H) in the first toss and getting a Tail (T) in the second toss.

Exhaustive Events

Exhaustive Event is the total number of all possible outcomes of an experiment.

Examples

When a coin is tossed, we get either Head or Tail. Hence there are 2 exhaustive events.

When two coins are tossed, the possible outcomes are (H, H), (H, T), (T, H), (T, T). Hence there are 4 (=22) exhaustive events.

When a dice is thrown, we get 1 or 2 or 3 or 4 or 5 or 6. Hence there are 6 exhaustive events.

 Algebra of Events

Let A and B are two events with sample space S. Then

A ∪ B is the event that either A or B or Both occur. (i.e., at least one of A or B occurs)

A ∩ B is the event that both A and B occur

A¯ is the event that A does not occur

A¯ ∩ B¯ is the event that none of A and B occurs

Example : Consider a die is thrown , A be the event of getting 2 or 4 or 6 and B be the event of getting 4 or 5 or 6. Then

A = {2, 4, 6} and B = {4, 5, 6}

A ∪ B = {2, 4, 5, 6}

A ∩ B = {4, 6}

A¯ = {1, 3, 5}

B¯ = {1, 2, 3}

A¯∩B¯ = {1,3}

Probability of an Event

Let E be an event and S be the sample space. Then probability of the event E can be defined as

P(E)= n(E)/n(S)

where P(E) = Probability of the event E, n(E) = number of ways in which the event can occur and n(S) = Total number of outcomes possible.

Number Theory (A starting to counting)

Number Theory:

Number theory is a branch of mathematics concerned with the properties of the positive integers (1, 2, 3, …). Sometimes called “higher arithmetic,” it is among the oldest and most natural of mathematical pursuits.

Number theory is the study of the integers (i.e. whole numbers) and related objects. Topics studied by number theorists include the problem of determining the distribution of prime numbers within the integers and the structure and number of solutions of systems of polynomial equations with integer coefficients. Many problems in number theory, while simple to state, have proofs that involve apparently unrelated areas of mathematics. A beautiful illustration is given by the use of complex analysis to prove the “Prime Number Theorem,” which gives an asymptotic formula for the distribution of prime numbers. Yet other problems currently studied in number theory call upon deep methods from harmonic analysis.

Until the mid-20th century, number theory was considered the purest branch of mathematics, with no direct applications to the real world. The advent of digital computers and digital communications revealed that number theory could provide unexpected answers to real-world problems. At the same time, improvements in computer technology enabled number theorists to make remarkable advances in factoring large numbers, determining primes, testing conjectures, and solving numerical problems once considered out of reach.

Modern number theory is a broad subject that is classified into subheadings such as elementary number theory, algebraic number theory, analytic number theory, geometric number theory, and probabilistic number theory. These categories reflect the methods used to address problems concerning the integers.

We will study those topics on number theory for this class;

  1. Integers
  2. Modular Arithmetic
  3. Diophantine Equations

Remainder:

In integer division, the remainder is the amount that is left over after dividing one integer by another. In polynomial division, the remainder is the polynomial that is left over after dividing one polynomial by another.

Integer Division:

An integer “a” is divisible by another integer “b” (or is a multiple of “b” ) it  can be written as  times another integer;

a = b x (integer)

Note that the remainder (r) will always be less than the divisor (d).

x=xd+ r where r <d

Primes:

A prime number is a positive integer that has exactly 2 positive divisors. i.e. 1 and that respective number only. The first few prime numbers are;

2,3,5,7,11,13,17……………….

 Euclid’s Theorem: There are infinitely many primes.

Euclid’s Proof;

For any finite set of primes {,  , Euclid considered the number

n” has a prime divisor “p” (every integer has at least one prime divisor). But “p” is not equal to any of the   (If “p” were equal to any of the , then “p”  would have to divide 1 , which is impossible.) So for any finite set of prime numbers, it is possible to find another prime that is not in that set.

In other words, a finite set of primes cannot be the collection of all prime numbers.

Notice that Euclid’s original proof was direct proof, not proof by contradiction.

Largest known prime number:

Despite there being infinitely many prime numbers, it’s actually difficult to find a large one. For recreational purposes, people have been trying to find as a large prime number as possible. The current largest known prime number is, having, 22,338,618 digits. This was found by the Great Internet Mersenne Prime Search project, which uses distributed computing to discover prime numbers in the form, known as Mersenne primes. Mersenne primes are very rare; in fact, it’s an open problem whether there are infinitely many Mersenne primes or not. Only 49 are known so far, the largest of which is the above.

Prime Factorization:

In number theory, the prime factorization of a number N is the set consisting of prime numbers whose product is N. As an example, the prime factorization of 90 is

90 = 2 X 3 X 3 X 5.

Due to its uniqueness for every positive integer, the prime factorization provides a foundation for elementary number theory.

Prime Factors:

The uniqueness of prime factorization is an incredibly important result, thus earning the name of the fundamental theorem of arithmetic:

Fundamental theorem of arithmetic: Any integer greater than 1 is either a prime number or can be written as a unique product of prime numbers. 

This statement implies that if a number is not prime, it has a prime number as its factor. For example, the factors of 8 are 1, 2, 4, and 8, where 2 and 4 are both prime numbers.

Example:

If x, y, z are three different prime numbers such that N =, how many positive divisors does N have excluding 1 and itself?

Since N =, we can conclude that x, y, and z are the factors of N . Since x, y and z are prime numbers, we can’t factor them to get any other number, so that gives us a total of 3 numbers.

But wait, we know that if x and y are factors of N, then y is also a factor of N. So a combination of two factors out of the three factors is also a divisor of N. In other words, we have,   and as factors of  N which are another 3 in addition to the 3 above.

Note that is also a combination that is a factor of N, but it equals the number itself and is therefore omitted.

So we have a total of 6 divisors, excluding 1 and the number itself.

Perfect Squares, Cubes, and Powers:

perfect square is an integer that can be expressed as the product of two equal integers. For example, 100 is a perfect square because it is equal to. If N is any integer, then is a perfect square. Because of this definition, perfect squares are always non-negative.

Similarly, a perfect cube is an integer that can be expressed as the product of three equal integers. For example, 27 is a perfect cube because it is equal to 3. Determining if a number is a perfect square, cube, or higher power can be determined from the prime factorization of the number.

Perfect Numbers: perfect number is a positive integer that equals the sum of its proper divisors, that is, positive divisors excluding the number itself. For example, 6 is a perfect number because the proper divisors of 6 are 1, 2 and 3 and 6

The sum of all positive divisors of a number n is denoted by. A perfect number is therefore a positive integer n such that

Perfect numbers were of great interest to ancient mathematicians including the Greeks, who attributed mystical significance to the property. It is perhaps somewhat surprising that many elementary questions about perfect numbers are still open. Most notably, it is not known whether there are infinitely many perfect numbers, and it is not known whether there are any odd perfect numbers.

Theorem: A positive integer “n” is an even perfect number if and only if for some positive prime “p” such that is prime. Here   is known as “Mersenne Prime”

Properties of Perfect Number:

  1. Every even perfect number ends in the digits 6 or 28 (when written in decimal).
  2. The iterative digital sum of any even perfect number except 6 is 1.
  3. The only square-free perfect number is 6.
  4. A perfect number is an Ore harmonic number; that is, the harmonic mean of its divisors is an integer. (Not every Ore harmonic number is perfect, e.g. 140.)
  5. If an odd perfect number exists, it has more than 300 digits, at least 75 prime factors, at least 9 distinct prime factors and at least one prime factor of at least 20 digits.

 Number Base:

number base (or base for short) of a numeral system tells us about the unique or different symbols and notations it uses to represent a value.

For example, the number base 2 tells us that there are only two unique notations 0 and 1.

The most common number base is decimal, also known as base 10. The decimal number system uses 10 different notations which are the digits 0~9. The base is not necessarily positive integers. The base can be positive, negative and 0, complex and nonintegral. Other frequently used bases include bases 2 and 16. These are used in computing and are called binary and hexadecimal.

****** I have posted this blog in hurry, Will make corrections soon. Especially the character and equation are missing from the above post. I’ll make corrections to those. Thanks

Exit mobile version